На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Мастер

20 подписчиков

Свежие комментарии

  • EPSRussia
    Добрый день! Позвольте прокомментировать в качестве официального представителя Ассоциации производителей и поставщико...Обзор утеплителей...
  • EPSRussia
    Добрый день! От имени Ассоциации производителей и поставщиков пенополистирола позвольте с вами не согласиться. Начнё...Что выбрать для у...
  • EPSRussia
    Добрый день! Почему же не выяснено? Ассоциация производителей и поставщиков пенополистирола располагает результатам...Утепление стен по...

Способы резки металла

Резка металла на отдельные заготовки – это технологический процесс, развивающийся и совершенствующийся десятилетиями, необходимых в самых разных сферах строительства и производства. По сравнению с технологиями еще 15-20-летней давности сегодня точность и производительность работы оборудования выросла в несколько раз, появились новые способы обработки материалов, обеспечивающие производство качественной продукции на стабильно высоком уровне. В этой статье мастер сантехник рассмотрит способы резки металла.

Основные виды резки металла

На сегодняшний день существует шесть основных методов резки металла, которые можно объединить в три группы:

  • Высокоточные способы резки металла
  • Механические
  • Термические

К первой группе относят лазерную и гидроабразивную резки. К термическим способам резки относятся газокислородная и плазменная. Механические способы – это ленточнопильная резка, резка гильотиной, прочие виды обработки металлов давлением.

Лазерная резка

При данном методе разрезание металла происходит за счет воздействия на изделие лазерного луча, образованного в лазере из обычного пучка света. Необычайная точность и качество получения кромок позволяет создавать высокоточные изделия для приборостроения, авиации, машиностроения и медицины. Лазерная резка металла широко применяется в промышленности.

Плазменная резка

Металл разрезается смесью газов, которая под воздействием электрической дуги превращаются в струю плазмы с температурой от 5000 до 30000°C и скоростью от 500 до 1500 м/с. Области применения плазменной резки весьма многочисленны, ведь эта технология является универсальной в смысле разрезаемых металлов, достигаемых скоростей резки и диапазона обрабатываемых толщин. Самое распространенное применение: резка труб, листового металла, фигурная резка, резка отверстий, резка бетона.

Газокислородная резка

Процесс газокислородной резки основан на свойстве металлов и их сплавов гореть в струе химически чистого кислорода. Металл вдоль линии разреза нагревается до температуры воспламенения его в кислороде, сжижается в струе кислорода. Образующиеся в процессе резки окислы выдуваются этой струей из места разреза. Ручная газовая резка используется на тех предприятиях, где объем перерабатываемого металла невелик и применение средств механизации экономически неоправданно. Она служит для вырезки заготовок под последующую ковку и штамповку по разметке из листа, резки профильного проката и труб, отрезки прибылей и литников в литейном производстве, а также при проведении ремонтных работ.

Ленточнопильная резка

Данный вид резки производится ленточной пилой кольцеобразной формы. Применяется в заготовительных цехах практических всех предприятий отечественного машиностроения, а также на предприятиях других отраслей, где применяется резка металла на профильные заготовки. Особенно эффективно использование ленточнопильных станков при резке дорогостоящих металлов и тонкостенных профилей.

Гидроабразивная резка

Гидроабразивная резка осуществляется с помощью смеси воды и абразива (песка), которая под давлением подается через узкое сопло. Этот способ позволяет разрезать изделия в толщину до 30 сантиметров. Технология гидроабразивной резки благодаря своим уникальным свойствам и универсальности, находит свое применение в различных отраслях промышленности, в изготовлении художественных изделий, строительстве, производстве рекламной продукции. Гильотина используется для рубки металла в разнообразных производственных сферах: при изготовлении профнастила, производстве водосточных систем, вентиляционных систем, элементов фасада и кровли, для производства различных профилей, в машиностроении, судостроении и строительстве.

Гильотина

Для этого способа используются ножницы и ножи по металлу. Они позволяют получить ровный разрез без заусенцев и зазубрин. Таким способом можно делать поперечные и продольные резы. Его используют и при производстве квадратного, и круглого профиля.

Термические способы резки

Таблица 1. Параметры основных видов резки металла

Рассмотрим более подробно термические способы резки. Данную группу можно разделить на следующие виды резки:

  • 1. Газовая резка
  • 1.1. кислородная;
  • 1.2. кислородно-флюсовая;
  • 1.3. резка кислородным копьем.
  • 2. Газоэлектрическая резка
  • 2.1. воздушно-дуговая;
  • 2.2. кислородно-дуговая.
  • 3. Плазменная резка
  • 3.1. плазменно-дуговая;
  • 3.2. резка плазменной струей.
  • 4. Лазерная или газолазерная резка
  • 4.1. кислородная резка с поддержкой лазерным лучом.

Кислородная резка

Кислородная резка заключается в сгорании разрезаемого металла в кислородной струе и удалении этой струей образовавшихся оксидов.

Рис. 1. Процесс кислородной резки металла.

Технология кислородной резки

Разрезаемый металл предварительно нагревается подогревающим пламенем резака, которое образуется в результате сгорания горючего газа (Ацетилен, пропан) в смеси с кислородом. При достижении температуры воспламенения металла в кислороде, на резаке открывается вентиль чистого кислорода (99 –99,8%) под давлением до 12 бар и начинается процесс резки. Чистый кислород из центрального канала мундштука, предназначенный для окисления разрезаемого металла и удаления оксидов, называют режущим в отличие от кислорода подогревающего пламени, поступающего в смеси с горючим газом из боковых каналов мундштука.

Струя режущего кислорода вытесняет в разрез расплавленные оксиды, они в свою очередь, нагревают следующий слой металла, что способствует его интенсивному окислению. В результате разрезаемый лист подвергается окислению по всей толщине, а расплавленные оксиды удаляются из зоны резки под воздействием струи режущего кислорода.

Техника кислородной резки

Процесс кислородной резки начинается с того, что поверхность разрезаемого листа следует очистить от окалины, краски, масла, ржавчины и грязи. Особое внимание уделяется очистке поверхности листа от окалины, поскольку она препятствует контакту металла с пламенем и струей режущего кислорода. Для этого необходимо прогреть поверхность стали подогревающим пламенем резака, в результате чего, окалина отскочит от поверхности. Прогрев следует выполнять узкой полосой по предполагаемой линии реза, перемещая пламя со скоростью, приблизительно соответствующей скорости резки.

Перед кислородной резкой металл нагревается с поверхности в начальной точке реза до температуры его воспламенения в кислороде. После пуска струи режущего кислорода и начала процесса окисления металла по толщине листа резак перемещают по линии реза.

Рис. 2. Кислородная резка металла

Как правило, прямолинейная кислородная резка стальных листов толщиной до 50 мм выполняется вначале с установкой режущего сопла мундштука в вертикальное положение, а затем с наклоном в сторону, противоположную направлению резки (обычно на 20–30º). Наклон режущего сопла мундштука в сторону ускоряет процесс окисления металла и увеличивает скорость кислородной резки, а, следовательно, и ее производительность. При большей толщине стального листа резак в начале резки наклоняют на 5º в сторону, обратную движению резки.

Оборудование: При кислородной резке используется такое оборудование, как резаки, шланги, баллонный регулятор, баллоны с газом в комплексе с газовой рампой или же газификатор.

Кислородно-флюсовая резка

Данный вид обработки металлов был разработан для материалов, которые плохо поддаются кислородной резке. Такими материалами являются чугун, легированные стали, цветные металлы и др. Кислородно-флюсовая резка отличается от обычной кислородной резки лишь тем, что помимо подогревающего пламени и струи режущего кислорода, в зону реза подается порошок флюса, который обеспечивает процесс резки за счет термического, химического и абразивного действия.

Технология и техника

При кислородно-флюсовой резке технология и техника не отличается от обычной кислородной резки, за исключением нижеизложенных нюансов.

При кислородно-флюсовой резке в кислородную режущую струю дополнительно вводятся порошкообразные флюсы, частицы которых, сгорая, дают значительный тепловой эффект, способствуя плавлению тугоплавких окислов на поверхности контакта кислорода с обрабатываемым металлом без значительного расплавления кромок металла под этим поверхностным слоем. Основой таких порошкообразных флюсов является железный порошок.

В процессе горения флюса образуются высоконагретые частицы FeO, которые способствуют образованию комплексных более легкоплавких соединений (FeО.SiО2; FeО.Cr2О3 и др.) и облегчают доступ кислорода к неокисленным частям металла вследствие удаления тугоплавких окислов.

Таким образом, в дополнение к процессам окисления металла и выдувания расплавленных шлаков при обычной кислородной резке, при кислородно-флюсовой резке имеет место интенсификация температуры в реакционном пространстве в результате сжигания порошка флюса (железа, феррофосфора, алюминия), сопровождаемая флюсованием тугоплавких окислов и абразивным их удалением (окалиной, кварцевым песком, глиноземом). Кислородно-флюсовая резка применяется как в качестве разделительной, так и в качестве поверхностной.

Оборудование: При кислородно-флюсовой резке используется такое оборудование, как емкости для флюса (флюсопитателя), резаки, шланги, баллонный регулятор, баллоны с газом в комплексе с газовой рампой или же газификатор.

Таблица 2. Состав флюса для резки различных материалов

Резка кислородным копьем

Кислородное копье - это стальная трубка, через которую подается кислород.

Технология резки кислородным копьем

Рабочий конец кислородного копья предварительно нагревается до температуры 1350–1400°С с помощью внешнего источника нагрева: сварочной дуги, подогревающего пламени резака или пламенем сварочной горелки. После воспламенения копья посторонний источник нагрева убирается. В результате подачи кислорода рабочий конец копья начинает интенсивно гореть, достигая температуры 2000°С. Для повышения тепловой мощности кислородного копья внутрь трубки, как правило, помещают стальной пруток или другой профиль.

Резка кислородным копьем

Рис. 3. Процесс резки кислородным копьем

Техника резки кислородным копьем

Кислородное копье прижимают к поверхности прожигаемого материала. Углубив рабочий конец копья в материал, повышают давление кислорода до необходимой рабочей величины, периодически выполняя копьем возвратно-поступательные (с амплитудой 10–20 см) и вращательные (на угол 10–15° в обе стороны) движения. При прожигании отверстия торец копья необходимо постоянно прижимать к материалу, отрывая его лишь на короткое время при возвратно-поступательном движении. Образуемые шлаки выносятся давлением в зазор между трубкой копья и стенкой прожигаемого отверстия.

Прожигание отверстий в чугуне применяется в металлургическом производстве при образовании шпуров в чугунных зашлакованных массивах, подлежащих разрушению во взрывных ямах для переплавки.

Производительность резки кислородным копьем чугуна крайне низка. Скорость прожигания отверстия диаметром 50–60 мм составляет не более 50 мм/мин. при расходе кислорода около 35 м3 на 1 м отверстия и 25 м трубок.

В некоторых случаях, чтобы повысить эффективность процесса резки в копье вместе с кислородом подается железный порошок. В этом случае возможно не только прожигание отверстий, но и разделительная резка стали и бетона.

Оборудование: При резке кислородным копьем используется такое оборудование, как кислородное копье, шланги, баллонный регулятор, баллоны с газом в комплексе с газовой рампой или же газификатор

Воздушно-дуговая резка

Воздушно-дуговая резка заключается в расплавлении металла по линии реза электрической дугой и принудительном удалении сжатым воздухом образующегося под действием дуги расплава.

Рис. 4. Схема воздушно-дуговой резки

Технология воздушно-дуговой резки

Воздух подается вдоль неплавящегося электрода (обычно угольного или графитового) и в специальном электрододержателе. Электрическая дуга, как правило, горит на постоянном токе обратной полярности.

Техника воздушно-дуговой резки

Сначала производится поджиг дуги, затем происходит разрезание металла электрической дугой. Струя воздуха используется для выдувания шлаков из места разреза. При резке электрод опирают концом о поверхность металла под углом к ней 80—85°, с наклоном в сторону направления резки.

Качество поверхности реза и прилегающего к ней металла невысокое. В поверхностном слое и на кромках глубиной 0,1–0,3 мм может наблюдаться повышение содержания углерода, вследствие чего может начаться процесс образования трещин. Для предотвращения увеличения содержания углерода необходимо по возможности не касаться электродом раскаленного металла. После воздушно-дуговой резки необходимо выполнять тщательную зачистку поверхностей щеткой до металлического блеска и производить осмотр для установления отсутствия поверхностных дефектов.

Воздушно-дуговая резка обычно используется для поверхностной обработки (строжки) или в качестве разделительной резки в лом сталей, алюминия, меди, титана.

Оборудование: При воздушно-дуговой резке используется такое оборудование, как резаки, кабели и рукава, компрессорные установки, источник питания.

Кислородно-дуговая резка

Рис.5. Схема кислородно-дуговой резки

Технология кислородно-дуговой резки

При кислородно-дуговой резке дуга горит между плавящимся электродом и разрезаемым металлом. Сварочный электрод трубчатый и по каналу внутри электрода подается режущий кислород. Дуга обеспечивает нагрев металла, а кислород, интенсивно окисляя железо, обеспечивает его сгорание и выдувание из зоны реза (рис. 5).

Кислородно-дуговую резку применяют преимущественно для специальных работ: резки металла под водой, строительно-монтажных работ, ремонта, а также в других случаях, когда приходится выполнять короткие резы ( до 500 мм).

Техника кислородно-дуговой резки

Для резки сначала зажигается дуга, затем, когда образуется расплавленная точка, с помощью рукоятки регулятора на держателе открывается поток режущего кислорода, он быстро окисляет металл и выдувает его.

Кислородно-дуговую резку применяют для резки черных и цветных металлов толщиной до 120 мм. Сила тока 200–350А, давление кислорода 3–10 бар (в зависимости от толщины).

Возможна полуавтоматическая кислородно-дуговая резка. В этом случае проволока обдувается кислородом концентрично.

Оборудование: При кислородно-дуговой резке используется такое оборудование, как резаки, кабели и рукава, источник питания, баллонный регулятор, баллоны с кислородом в комплексе с рамповым оборудованием или же газификатор.

Плазменная резка

Плазменная резка заключается в проплавлении разрезаемого металла за счет теплоты, генерируемой сжатой плазменной дугой, и интенсивном удалении расплава плазменной струей.

Технология плазменной резки

Плазма представляет собой ионизированный газ с высокой температурой, способный проводить электрический ток. Плазменная дуга получается из обычной дуги в специальном устройстве – плазмотроне – в результате ее сжатия и вдувания в нее плазмообразующего газа. Различают две схемы плазменной резки:

  • Плазменно-дуговая резка
  • Резка плазменной струей

Рис. 6. Схема плазменной резки

При плазменно-дуговой резке дуга горит между неплавящимся электродом и разрезаемым металлом (дуга прямого действия). Столб дуги совмещен с высокоскоростной плазменной струей, которая образуется из поступающего газа за счет его нагрева и ионизации под действием дуги. Для разрезания используется энергия одного из приэлектродных пятен дуги, плазмы столба и вытекающего из него факела.

При резке плазменной струей дуга горит между электродом и формирующим наконечником плазмотрона, а обрабатываемый объект не включен в электрическую цепь (дуга косвенного действия). Часть плазмы столба дуги выносится из плазмотрона в виде высокоскоростной плазменной струи, энергия которой и используется для разрезания.

Плазменно-дуговая резка более эффективна, нежели резка плазменной струей, и широко применяется для обработки металлов. Резка плазменной струей используется реже и преимущественно для обработки неметаллических материалов, поскольку они не обязательно должны быть электропроводными.

Рис. 7. Плазменная резка

Технологические возможности процесса плазменной резки металла (скорость, качество и др.), а также характеристики основных узлов плазмотронов определяются, прежде всего, плазмообразующей средой.

Техника плазменной резки металла

Плазменная резка экономически целесообразна для обработки:

  • Алюминия и сплавов на его основе толщиной до 120 мм;
  • Меди толщиной до 80 мм;
  • Легированных и углеродистых сталей толщиной до 50 мм;
  • Чугуна толщиной до 90 мм.

Резак располагают максимально близко к краю разрезаемого металла. После нажатия на кнопку выключателя резака вначале зажигается дежурная дуга, а затем режущая дуга, и начинается процесс резки. Расстояние между поверхностью разрезаемого металла и торцом наконечника резака должно оставаться постоянным. Дугу нужно направлять вниз и обычно под прямым углом к поверхности разрезаемого листа. Резак медленно перемещают вдоль планируемой линии разреза. Скорость движения необходимо регулировать таким образом, чтобы искры были видны с обратной стороны разрезаемого металла. Если их не видно с обратной стороны, значит металл не прорезан насквозь, что может быть обусловлено недостаточным током, чрезмерной скоростью движения или направленностью плазменной струи не под прямым углом к поверхности разрезаемого листа.

Плазмообразующие газы

Плазменная резка алюминия и его сплавов толщиной 5–20 мм обычно выполняется в азоте, толщиной от 20 до 100 мм – в азотно-водородных смесях (65–68% азота и 32–35% водорода), толщиной свыше 100 мм – в аргоно-водородных смесях (35–50% водорода).

Плазменная резка меди может осуществляться в азоте (при толщине 5–15 мм), сжатом воздухе (при малых и средних толщинах), аргоно-водородной смеси.

Плазменная резка высоколегированных сталей эффективна только для толщин до 100 мм (для больших толщин используется кислородно-флюсовая резка). При толщине до 50–60 мм могут применяться воздушно-плазменная резка и ручная резка в азоте, при толщинах свыше 50–60 мм – азотно-кислородные смеси.

Резка нержавеющих сталей толщиной до 20 мм может быть выполнена в азоте, толщиной 20–50 мм – в азотно-водородной смеси (50 % азота и 50 % водорода). Также возможно использование сжатого воздуха.

Для резки углеродистых сталей используют сжатый воздух (как правило, при толщинах до 40–50 мм), кислород и азотно-кислородные смеси.

Таблица 3. Ориентировочные режимы воздушно-плазменной резки металла

Можно выделить такие преимущества плазменной резки в сравнении с газовыми способами:

  • Выше скорость резки металла малой и средней толщины
  • Универсальность – плазменная резка используется для обработки сталей, алюминия и его сплавов, меди и сплавов, чугуна и др. материалов
  • Точные и высококачественные резы, при этом в большинстве случаев исключается или заметно сокращается последующая механическая обработка

Экономичность воздушно-плазменной резки – потребности в дорогостоящих газах отсутствует (ацетилене, кислороде, пропан-бутане)

  • Возможность вырезать детали сложной формы;
  • Короткое время прожига (при кислородной резке требуется продолжительный предварительный прогрев)
  • Безопасная резка, поскольку отсутствуют взрывоопасные баллоны с газом.

Недостатки плазменной резки по сравнению с газовыми способами резки заключаеются в:

  • Максимальная толщина реза обычно составляет 80–100 мм (кислородной резкой можно обрабатывать чугун и некоторые стали толщиной до 500 мм)
  • Стоимость оборудования намного выше
  • Повышенные требования к техническому обслуживанию оборудования
  • Высокий уровень шума вследствие истечения газа из плазматрона с околозвуковыми скоростями
  • Вредные для организма азотсодержащие выделения (при использовании азота), для уменьшения который разрезаемое изделие погружают в воду.

Оборудование: При плазменной резке используется такое оборудование, как плазмотрон, источник питания, компрессор, баллоны с газом.

Лазерная резка

Рис. 8. Лазерная резка

При лазерной резке нагревание и разрушение участка материала осуществляется с помощью лазерного луча.

В отличие от обычного светового луча для лазерного луча характерны такие свойства, как направленность, монохроматичность и когерентность.

За счет направленности энергия лазерного луча концентрируется на относительно небольшом участке. Так, по своей направленности лазерный луч в тысячи раз превышает луч прожектора.

Лазерный луч по сравнению с обычным светом является монохроматичным, т. е. обладает фиксированной длиной волны и частотой. Это облегчает его фокусировку оптическими линзами.

Лазерный луч имеет высокую степень когерентности – согласованного протекания во времени нескольких волновых процессов. Когерентные колебания вызывают резонанс, усиливающий мощность излучения.

Благодаря вышеизложенным свойствам лазерный луч может быть сфокусирован на очень маленькую поверхность материала и создать на ней плотность энергии, достаточную для нагревания и разрушения материала (например, порядка 108 Вт/см2 для плавления металла).

Технология лазерной резки металла

Воздействие лазерного излучения на металл при разрезании характеризуется общими положениями, связанными с поглощением и отражением излучения, распространением поглощенной энергии по объему материала за счет теплопроводности и др., а также рядом специфических особенностей.

В зоне воздействия лазерного луча металл нагревается до первой температуры разрушения – плавления. Поглощая излучение, металл расплавляется, и фазовая граница плавления перемещается вглубь материала. Далее продолжается энергетическое воздействие лазерного луча, что приводит к увеличению температуры, достигающей второй температуры разрушения – кипения, при которой металл начинает активно испаряться.

Таким образом, возможны два механизма лазерной резки – плавлением и испарением. Однако последний механизм требует высоких энергозатрат и осуществим лишь для очень малой толщины металла. Поэтому на практике резку выполняют плавлением. При этом в целях существенного сокращения затрат энергии, повышения толщины обрабатываемого металла и скорости разрезания применяется вспомогательный газ, который вдувается в зону реза с целью удаления продуктов разрушения металла. Чаще всего в качестве вспомогательного газа используется кислород, воздух, азот. Такая резка называется газолазерной.

Рис. 9. Схема газолазерной резки

Например, кислород при газолазерной резке выполняет тройную функцию:

  • Газ содействует предварительному окислению металла и снижает его способность отражать лазерное излучение;
  • Разрезаемый металл воспламеняется и горит в струе кислорода, в результате чего выделяется дополнительная теплота, что усиливает действие лазерного излучения;
  • Кислородная струя сдувает и уносит из области резки расплавленный металл и продукты его сгорания. Это обеспечивает одновременный приток газа непосредственно к фронту реакции горения.

Невозможен или крайне сложен раскрой лазером таких материалов как текстолит, стеклотекстолит, гетинакс, сотовый полипропилен, поликарбонат, сотовый поликарбонат. Затруднено разрезание материалов, склонных к растрескиванию, например, керамики или стекла.

Лазерный раскрой листового металла осуществляется на лазерном станке с минимальной затратой времени на регулировку оборудования. Используемая технология управления и программирования позволяет быстро получить готовую деталь по предоставленному чертежу. В процессе обработки обеспечивается высокая гибкость, оптимизируется последовательность каждой технологической операции и ускоряется решение вопросов материально-технического снабжения.

Оборудование: При лазерной резке используется такое оборудование, как лазерный станок, баллоны с газом в комплексе с рамповым оборудованием или газификатор.

Преимущества, недостатки и сравнительная характеристика

Сфокусированное лазерное излучение позволяет разрезать почти любые материалы независимо от их теплофизических свойств. При этом можно получать качественные и узкие резы (шириной 0,1–1 мм) со сравнительно небольшой зоной термического влияния. При лазерной резке возникают минимальные деформации, как временные в процессе обработки заготовки, так и остаточные после ее полного остывания. В результате возможна резка с высокой степенью точности, в том числе нежестких и легкодеформируемых изделий. Благодаря относительно несложному управлению лазерным пучком можно выполнять автоматическую обработку плоских и объемных деталей по сложному контуру.

Статья на сайте полностью не поместилась, продолжить чтение вы сможете по ссылке:

https://santekhnik-moskva.blogspot.com/2019/06/Sposoby-rezki...

https://tvin270584.livejournal.com/909613.html

https://dzen.ru/media/id/6007c9d6e1be7a0d33505026/sposoby-re...

https://www.facebook.com/groups/santehnikmoskva/permalink/23...

https://www.liveinternet.ru/users/2546267/post497382697/

Ссылка на первоисточник

Картина дня

наверх